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Abstract

A hierarchy of one-dimensional high-order remapping schemes is presented and their per-
formance with respect to accuracy, convergence rate and dispersion investigated. The schemes
are also compared based on traditional advection experiments in periodicdomains and remap-
ping experiments in closed domains. The piecewise quartic method (PQM) is presented, based on
fifth-order accurate piecewise polynomials, and is motivated by the needto significantly improve
hybrid coordinate systems of ocean climate models, which require the remapping to be conser-
vative, monotonic and highly accurate. A limiter for this scheme is fully described that never
decreases the polynomial degree, except at the location of extrema where a piecewise constant
reconstruction is used. We assess the use of high-order explicit and implicit (i.e., compact) es-
timates for the edge values and slopes needed to build the piecewise polynomials in bothPPM

(piecewise parabolic method) andPQM. It is shown that all limitedPQM schemes perform signif-
icantly better than limitedPPM schemes and thatPQM schemes are much more cost-effective.

Keywords: reconstruction; remapping; piecewise parabolic method (PPM); piecewise quartic
method (PQM); finite volume method; nonuniform grids; compact schemes;advection schemes

1 Introduction

Remapping is a crucial component of most Arbitrary Lagrangian-Eulerian (ALE) algorithms used
in computational fluid dynamics [12, 16, 13]. These algorithms involve a regridding step, whereby
a new grid is generated based on some criteria, and a remapping step, whereby the variables are
remapped from the old grid onto the new grid (Figure 1). It is generally required that remapping be
both conservative and monotonic in the sense that no new extrema should be created nor existing
ones amplified. This is particularly important in applications where boundedness of some variables
must be guaranteed.

The present study is motivated by the growing need to improvevertical coordinate systems in
ocean general circulation models used for climate predictions. Over the last four decades or so,
the vast majority of ocean models have used a single coordinate system in the vertical, usually
aiming at a better representation of selected physical processes. These ocean models, however,
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have difficulties resolving physical processes for which they were not primarily designed. Hybrid
coordinate ocean models have thus naturally emerged where the vertical grid is built by combining
different coordinate systems in different regions [15, 2, 6, 1]. Due to the dynamical nature of the
ocean, these hybrid coordinate systems are adapted in the course of the simulations, which means
that vertical remapping is a key component. The accuracy of remapping is a major research issue
in hybrid coordinate ocean models that prevents the hybrid framework from being truly convincing;
presently, third-order reconstruction is used, at best, inthese models. Hence, there is a need to
explore higher-order representations.

An essential element of any remapping scheme lies in the reconstruction. Based on a set of
cell averages on a given grid, the objective of a reconstruction scheme is to accurately and con-
servatively represent the underlying, real data with piecewise functions. Other constraints, such as
monotonicity, may also apply. In this paper, we limit ourselves to piecewise polynomials but other
functions can be employed, such as rational functions [e.g., 19]. Once the polynomial degree is cho-
sen (for example, degree two leading to piecewise parabolas), a number of degrees of freedom must
be determined that will produce a unique polynomial over thecell. There are basically two ways of
improving a polynomial reconstruction method. First, the accuracy of the estimates for the pending
degrees of freedom (e.g., edge values) may be improved. Second, when a monotonic reconstruction
is required, improving the limiter may yield more accurate results. The latter domain of improve-
ment, in particular, has drawn most of the attention in the case of the piecewise parabolic method
(PPM) [4, 3, 11, 17, 10]. Besides these efforts, piecewise polynomial methods have witnessed al-
most no improvement regarding the edge estimates or the use of higher-degree polynomials. Only
recently has the parabolic spline method been introduced but it also relies on polynomials of degree
two [20]. [5] clearly showed that successively high-order schemes lead to more accurate solutions
for both limited and unlimited finite volume fluxes. The closerelationship between their third-order
method andPPM inspired us to seek improvement by using higher-order polynomials.

The objective of this paper is twofold. First, we introduce the piecewise quartic method (PQM)
that uses piecewise polynomials of degree four and which, toour knowledge, has never been pre-
sented before. A limiter is devised that ensures monotonicity of anyPQM-based remapping scheme.
Second, a range of explicit and implicit schemes to estimatethe edge values and slopes is investi-
gated on the basis of accuracy, convergence analysis and dispersion.

The main part (Section 2) of the paper focuses on reconstruction. We presentPQM and the wide
range of explicit and implicit schemes to estimate the edge values and slopes. The associatedPPM

andPQM schemes are evaluated in terms of accuracy. A limiter forPQM is also described in detail.
Section 3 deals with remapping itself in the form of advection. Accuracy and dipersion analysis
serve as comparative tools. The treatment of boundaries is covered in Section 4 and some comments
on computational costs are made in Section 5. Conclusions are given in Section 6.

2 Piecewise polynomial reconstruction schemes

Given a nonuniform grid of cell widthshj and cell averages̄uj , for j = 1, 2 . . . N whereN
is the number of cells, the objective is to determine a piecewise polynomial reconstruction that
accurately approximates the underlying data (Figure 2). The polynomial over cellj is notedRj and,
for convenience, use is made of a local coordinateξ ∈ [0, 1] such that the global coordinatex is
given by

x = xj− 1
2

+
(

xj+ 1
2
− xj− 1

2

)

ξ

= xj− 1
2

+ hjξ,
(1)
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where the global coordinates of the left and right cell interfaces arexj− 1
2

andxj+ 1
2
, respectively.

Whichever polynomial reconstruction is considered, we require the method to be locally conser-
vative. Hence, the cell average ofRj must satisfy the following relationship :

1

hj

∫ x
j+ 1

2

x
j− 1

2

Rj(x) dx =

∫ 1

0

Rj(ξ) dξ = ūj , (2)

which constrains one degree of freedom. A trivial choice is to resort to piecewise constants, in which
case we simply haveRj = ūj . The piecewise constant method (PCM) is only first-order accurate
and, when combined with remapping, is highly diffusive and has poor dispersion properties. Im-
provement is gained by using a second-order accurate schemebased on a linear reconstruction. The
piecewise linear method (PLM) requires an additional constraint. An estimate of the slope generally
serves this purpose [18, 9]. Although more accurate and lessdiffusive thanPCM, PLM performs
poorly when extensive remapping occurs (e.g., many remapping steps or long integration times for
advection problems). We now focus on third-order and fifth-order reconstruction methods, referred
to as the piecewise parabolic method (PPM) and the piecewise quartic method (PQM), respectively.

2.1 The piecewise parabolic method (PPM)

With the piecewise parabolic method, a parabola is constructed within each cell. The general
form is

P (ξ) = a0 + a1ξ + a2ξ
2 (3)

and three coefficients need be determined. In addition to theenforcement of local conservation, Eq.
(2), two additional constraints are necessary. A natural choice is to enforce the value of the parabola
at the left and right edges of the cell. If these edge values are noteduL anduR, respectively, and if
the cell average is denoted byū, the coefficients of the parabola are

a0 = uL,

a1 = 6ū− 4uL − 2uR,

a2 = 3 (uL + uR − 2ū) .

(4)

The remaining part of the reconstruction process is to estimate the edge values. This is also where
much liberty is afforded. We note that low-order estimates of the edge values will impair the overall
quality of the reconstruction scheme. In particular, estimates of edge values should be at least
third-order accurate in order for a global parabolic profileto be exactly retrieved by a reconstruction
scheme based onPPM. Any higher-order estimates of edge values will provide a piecewise parabolic
reconstruction that also passes this sanity check.

2.2 The piecewise quartic method (PQM)

The piecewise quartic method relies on piecewise polynomials of degree four:

Q(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3 + a4ξ
4. (5)

Five coefficients have to be determined and, therefore, fourconstraints are needed in addition to
local conservation, Eq. (2). Similarly toPPM, the edge values provide two constraints. Two nat-
ural additional constraints are the edge slopes. Given the left and right edge slopesu′

L andu′
R,
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respectively, and keeping the same notations for the edge values and cell average as before, the five
coefficients read

a0 = uL,

a1 = u′
L,

a2 = 30ū− 12uR − 18uL +
3

2
(u′

R − 3u′
L) ,

a3 = − 60ū + 6u′
L − 4u′

R + 28uR + 32uL,

a4 = 30ū +
5

2
(u′

R − u′
L)− 15 (uL + uR) ,

(6)

where

u′
L =

∂Q

∂ξ
|ξ=0 =

∂Q

∂x
|x=x

j− 1
2

hj ,

u′
R =

∂Q

∂ξ
|ξ=1 =

∂Q

∂x
|x=x

j+ 1
2

hj .

The above relationships are easily derived from Eq. (1).
Again, care must be taken to use estimates that are sufficiently accurate in order to exactly

retrieve a global quartic profile. Hence, at least fifth-order accurate edge values and at least fourth-
order accurate edge slopes should be used to be consistent with the order of the polynomials used
for the reconstruction. Because both the edge values and slopes must be provided, a great number
of possible combinations is theoretically possible.

We now turn our attention to the estimation of edge values andslopes by using both explicit and
implicit (i.e., compact) schemes.

2.3 Edge-value estimates

To estimate the edge values, explicit or implicit schemes can be used. We refer to explicit schemes
as those schemes that provide estimates via closed-form expressions. Implicit schemes, on the other
hand, require solving a linear system. Explicit schemes have the advantage of being computationally
cheaper than implicit schemes because, unlike implicit schemes, they do not require solving banded
diagonal systems. However, for a given order of accuracy, implicit schemes are globally more accu-
rate and the stencil is shorter than for explicit schemes. This is a clear advantage when boundaries
are involved. In addition, as will be shown, remapping schemes based on implicit estimates of edge
values are less diffusive and have better dispersion properties. For the sake of clarity, the following
discussion deals with uniform grids. The equivalent expressions for nonuniform grids are provided
in the Appendix.

2.3.1 Explicit schemes

All explicit schemes are based on fitting (in a finite volume sense) a polynomial through the
data and evaluating it at the location of an edge to obtain an estimate of the edge value. When
evaluated pointwise, a fitting polynomial of degreen − 1, based on data inn cells, provides an
nth-order accurate estimate of the edge value. It is assumed that the degrees of cell-centered and
edge-centered polynomials are even and odd, respectively (Figure 3). Edge-centered polynomials
are unique to each edge and therefore provide a unique estimate for the edge value. Cell-centered
polynomials are unique to each cell and provide the left and right edge values for this cell. In
this case, neighboring estimates may be different so that two different edge value estimates may be
associated with a given edge, giving rise to a piecewise discontinuous reconstruction.
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Fitting in a finite volume sense means that a polynomialFk of even degreen and centered on
cell k satisfies the following relationships

1

hj

∫ x
j+ 1

2

x
j− 1

2

Fk(x) dx = ūj for j = k −
n

2
, . . . j +

n

2
, (7)

while a polynomialFk+ 1
2

of odd degreen and centered on edgek + 1
2 satisfies the following

relationships
1

hj

∫ x
j+ 1

2

x
j− 1

2

Fk+ 1
2
(x) dx = ūj for j = k −

n

2
, . . . j +

n

2
, (8)

where the underline and overline indicate rounding down andup, respectively, to the closest integer.
As inspired by [7], edge-value estimates are provided for cell j, in which case we haveuL =

uj− 1
2

anduR = uj+ 1
2
.

Third-order estimates on uniform grids are given by

uj− 1
2

=
1

6
(2ūj−1 + 5ūj − ūj+1) ,

uj+ 1
2

=
1

6
(−ūj−1 + 5ūj + 2ūj+1) ,

(9)

and will be referred to ash3 estimates.

Fourth-order estimates on uniform grids are given by

uj− 1
2

=
1

12
(−ūj−2 + 7ūj−1 + 7ūj − ūj+1) ,

uj+ 1
2

=
1

12
(−ūj−1 + 7ūj + 7ūj+1 − ūj+2) ,

(10)

and will be referred to ash4 estimates.

Fifth-order estimates on uniform grids are given by

uj− 1
2

=
1

60
(−3ūj−2 + 27ūj−1 + 47ūj − 13ūj+1 + 2ūj+2) ,

uj+ 1
2

=
1

60
(2ūj−2 − 13ūj−1 + 47ūj + 27ūj+1 − 3ūj+2) ,

(11)

and will be referred to ash5 estimates.

Sixth-order estimates on uniform grids are given by

uj− 1
2

=
1

60
(ūj−3 − 8ūj−2 + 37ūj−1 + 37ūj − 8ūj+1 + ūj+2) ,

uj+ 1
2

=
1

60
(ūj−2 − 8ūj−1 + 37ūj + 37ūj+1 − 8ūj+2 + ūj+3) ,

(12)

and will be referred to ash6 estimates.
Note that averaging the discontinuoush3 and h5 estimates lead to theh4 and h6 estimates,

respectively.
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2.3.2 Implicit schemes

Limiting ourselves to tridiagonal systems for computational efficiency, a general expression for
implicit (or compact) schemes on nonuniform grids, relating edge values to cell averages, is given
by

αuj− 1
2

+ uj+ 1
2

+ βuj+ 3
2

= aūj−1 + būj + cūj+1 + dūj+2, (13)

[8]. Note that, in Eq. (13), pointwise values appear in the left-hand side while cell averages appear
in the right-hand side. The unknown coefficientsα, β anda, b, c, d are determined via a Taylor
expansion ofu aboutj + 1

2 , as presented by [8]. The desired order of accuracy is attained by having
terms of lower matching orders of accuracy cancel out, whichyields equations to be satisfied by the
unknown coefficients. In the particular case of uniform grids, Eq. (13) is symmetric aboutuj+ 1

2
so

thatα = β, a = d andb = c.
In principle, odd-order accurate edge-value estimates could be calculated but it would imply

considering asymmetric stencils. For example, a third-order estimate can be obtained by computing
α, β anda while b = c = d = 0. The unknowns would then be determined by enforcing the
zeroth-, first- and second-order terms to cancel out in the Taylor expansion. However, asymmetric
estimates for the edge values should not be used since they produce asymmetric reconstructions even
for symmetric data.

The coefficientsα, β anda, b, c, d are given in Table 1 for uniform grids. Implicit edge-value
estimates will be referred to asihn, wheren is the order of accuracy.

2.4 Edge-slope estimates

Similarly to edge values, estimates for edge slopes may be based on explicit or implicit schemes.
Uniform grids are assumed for the sake of clarity in the following discussion.

2.4.1 Explicit schemes

Explicit edge-slope estimates ofnth−order accuracy are calculated by first determining the fitting
polynomial of degreen. The polynomial is then differentiated and the resulting polynomial (of
degreen − 1) is evaluated pointwise to yield a slope estimate. The estimates are continuous, even
when using cell-centered fitting polynomials.

Fourth-order estimates on uniform grids are given by

u′
j− 1

2
=

1

12h
[15 (ūj − ūj−1)− (ūj+1 − ūj−2)] ,

u′
j+ 1

2
=

1

12h
[15 (ūj+1 − ūj)− (ūj+2 − ūj−1)] ,

(14)

and will be referred to ash4 estimates.

Fifth-order estimates on uniform grids are given by

u′
j− 1

2
=

1

180h
[245 (ūj − ūj−1)− 25 (ūj+1 − ūj−2) + 2 (ūj+2 − ūj−3)] ,

u′
j+ 1

2
=

1

180h
[245 (ūj+1 − ūj)− 25 (ūj+2 − ūj−1) + 2 (ūj+3 − ūj−2)] ,

(15)

and will be referred to ash5 estimates.
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2.4.2 Implicit schemes

Again, limiting ourselves to tridiagonal systems for computational efficiency, a general expression
for implicit (or compact) schemes on nonuniform grids, relating edge slopes to cell averages, is given
by

αu′
j− 1

2
+ u′

j+ 1
2

+ βu′
j+ 3

2
= aūj−1 + būj + cūj+1 + dūj+2. (16)

The unknown coefficientsα, β anda, b, c, d are determined via a Taylor expansion ofu aboutj + 1
2 .

The desired order of accuracy is attained by having terms of lower matching orders of accuracy
cancel out, which yields equations to be satisfied by the unknown coefficients. In the particular
case of uniform grids, Eq. (16) is symmetric aboutuj+ 1

2
so thatα = β, a = −d andb = −c.

Note also that, because of this symmetry, implicit schemes on uniform grids produce edge-slope
estimates that are automatically one order of accuracy higher than their equivalent on nonuniform
grids. Hence, for example, by designing a third-order scheme for nonuniform grids, it becomes
automatically fourth-order accurate on uniform grids. This gain in accuracy does not happen when
estimating edge values.

The coefficientsα, β anda, b, c, d are given in Table 2 for uniform grids. Implicit edge-slope
estimates will be referred to asihn, wheren is theactual order of accuracy. So,n may change
depending on whether uniform or nonuniform grids are actually used, although the same scheme is
considered.

2.5 Reconstruction accuracy and convergence analysis

We now comparePPM and PQM solely on the basis of unlimited reconstruction performance.
Remapping errors will be analyzed later. We aim at assessinghow edge-value and edge-slope esti-
mates affect the global error of the scheme and its order of accuracy. The global error is a measure
(for a given norm) of the error on a given grid while the order of accuracy is the rate at which
this global error decreases as the grid size decreases. Bothmeasures must be considered. Indeed,
schemes usinghn andihn estimates for the edge values will have the same order of accuracy but
will most likely have different error norms on a given grid.

A PPM scheme denoted byPPMhn means thathn edge-value estimates are used for reconstruc-
tion. Similarly, aPQM scheme denoted byPQMhn/hm means thathn edge-value andhm edge-slope
estimates are used for the reconstruction. Generally, for consistency, we require that the order of ac-
curacy for the edge-value estimates be one unit higher than that for the edge-slope estimates (i.e.,
n = m + 1).

To avoid having to deal with boundaries, periodic domains will first be considered. The treatment
of boundaries is covered in Section 4. A periodic functionf(x) is given as initial data on the
nondimensional domain[0, 1]. Initial cell averages are defined as follows:

ūj =
1

hj

∫ x
j+ 1

2

x
j− 1

2

f(x) dx.

Reconstruction accuracy is evaluated by calculating theL2-norm of the errore:

||e||L2
=

[
∫ 1

0

|f(x)−R(x)|2 dx

]1/2

,

whereR is the global reconstructed profile, made up of piecewise polynomialsRj defined on each
cell. The polynomialsRj are defined by (3)-(4) and (5)-(6) for PPM and PQM, respectively. Ex-
amples of reconstructions usingPPM andPQM are shown in Figure 4. For both methods, implicit
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edge-value estimates produce more accurate results than their explicit equivalent for a given order
of accuracy. In addition, at low resolution,PPM ih4 yields a reconstruction that is more accurate
than both high-order explicitPQM h5/h4 andPQM h6/h5 schemes. Therefore, to be a successful
alternative toPPM with implicit edge-value estimates at lower resolutions,PQM must also make use
of implicit edge-value estimates.

Now, since the orders of accuracy ofPPM andPQM are three and five, respectively, we expect
all PQM schemes to to be more accurate thanPPM schemes at higher resolutions. This is shown
via a convergence analysis experiment where gradually refined uniform and nonuniform grids are
used for reconstructing the Gaussian profile on a periodic domain (Figure 5). Nonuniform grids are
simply modified uniform grids for which the edge locations are perturbed by a uniformly-distributed
number in[−h/4, h/4], whereh is the uniform grid size. For uniform grids, the error norms are
reported againsth while for nonuniform random grids, error norms are reportedagainst the average
grid sizeh̄.

As shown in Figure 5, using at least third-order accurate edge-value estimates forPPM ensures
that the scheme is third-order accurate. Similarly, using edge-value and edge-slope estimates that are
at least fifth-order and fourth-order accurate, respectively, ensures thatPQM is fifth-order accurate.
Note, however, that the empirical reconstruction order of accuracy forPQM h6/h5 andPQM ih6/ih5

is six. Finally, as expected, the order of accuracy ofPQM ih4/ih3 reduces to four.
In agreement with results shown in Figure 4, not only do implicit schemes perform better than

their explicit equivalent overall, they especially produce more accurate reconstructions at lower
resolutions (see inset in Figure 5a), which are resolutionsthat usually matter in most applications. At
low resolution,PPM ih4 is more accurate than all explicitPQM schemes butPQM ih4/ih3 andPQM

ih6/ih5 perform better. Nonetheless, as already mentioned,PQM ih4/ih3 is fourth-order accurate,
which turns out to be a waste of the potentially higher order of accuracy ofPQM .

2.6 Limiting PQM

We now take up the task of limiting thePQM reconstruction scheme in order to obtain piecewise
quartics that are monotonic within each cell and bounded between neighboring cell averages. This
ensures that thePQM-based remapping scheme will neither create new extrema noramplify existing
ones.

The algorithm for limitingPQM operates in two phases. The first phase ensures that the edge
values are bounded by neighboring cell averages and that theedge slopes are consistent by being of
the same sign as that of the limitedPLM slope. Once the edge values and slopes are bounded and
consistent, respectively, the second phase ensures that the ensuing quartic is monotonic within the
cell. This requires checking whether inflexion points existwithin the cell and, if so, whether the
slope of the quartic at the inflexion points is of the same signas that of the limitedPLM slope.

Before delving into the detailed algorithm, preliminary results regarding inflexion points are
recalled.

Lemma 1 Any quarticQ(ξ), as defined by (5)-(6) forξ ∈ [0, 1], has at most two inflexion points
in [0, 1].

Proof. Inflexion points are real roots of the second derivative ofQ(ξ), which is a parabola that
has at most two real roots. QED.
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Lemma 2 If the edge slopes are positive (negative) and if the derivative of the quarticQ(ξ) at any
inflexion point lying within[0, 1] is positive (negative),Q(ξ) monotonically increases (decreases) in
[0, 1].

Proof (for the positive case). Any inflexion point is an extremum of the derivative ofQ(ξ). If all
extrema of the derivative in[0, 1] are positive, the derivative ofQ(ξ) is everywhere positive in[0, 1]
andQ(ξ) monotonically increases in[0, 1]. QED.

Corollary 1 If the edge slopes are positive (u′
L > 0 andu′

R > 0) and if the quarticQ(ξ) has no
inflexion point lying within(0, 1), Q(ξ) monotonically increases in[0, 1].

Proof. This follows from Lemma 2. Note that inflexion points lying oneither edge (and only
there) do not preclude the quartic to be monotonic.

Since the limitedPLM slope is resorted to throughout the algorithm, we now give its definition for
nonuniform grids. Given a cell of widthhC and left and right neighboring cells of widthshL and
hR, respectively, the limitedPLM slopeσ is defined as

σ =

{

sign(σC) min (|σL|, |σR|, |σC |) if σLσR > 0,

0 otherwise,
(17)

whereσL andσR are the left and right one-sided slopes, respectively, andσC is the centered slope.
The sign function is equal to 1 for positive arguments, -1 fornegative arguments and 0 otherwise.
The one-sided and centered slopes are defined as

σL = 2
ūC − ūL

hL + hC
×

hL + hC

hC
= 2

ūC − ūL

hC
,

σR = 2
ūR − ūC

hC + hR
×

hC + hR

hC
= 2

ūR − ūC

hC
,

σC = 2
ūR − ūL

hL + 2hC + hR
,

(18)

whereūL, ūC andūR are the cell averages associated with the left, center and right cells, respec-
tively. Note that the slopes defined by Eq. (18) are the traditional van Leer limitedPLM slopes [e.g.,
9], written for nonuniform grids. An illustration is provided in Figure 6.

Both phases of the algorithm are now described in detail. We assume that edge valuesuL anduR

and edge slopesu′
L andu′

R are given.

2.6.1 Edge values boundedness and edge slopes consistency

Prior to any verification of boundedness and consistency, local extrema are flattened by equating
the edge values to the cell average and the edge slopes to zero. An extremum is detected when the
left and right one-sided slopes have different signs, which, according to Eq. (17), translates into
σ = 0. If no extremum is detected, the boundedness of edge values is checked.
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An edge value is limited only when it is unbounded, that is, when it lies out of the range defined by
the neighboring cell averages. If the calculated edge valueis bounded, we assume that the estimate
is accurate and need not be modified. Hence, if the left edge value is unbounded, that is if

(ūL − uL)(uL − ūC) < 0,

then the new estimate reads:

uL ← ūC − sign(σ)min

(

hC

2
|σ|, |uL − ūC |

)

. (19)

Similarly, if the right edge value is unbounded, that is if

(ūR − uR)(uR − ūC) < 0,

then the new estimate reads:

uR ← ūC + sign(σ)min

(

hC

2
|σ|, |uR − ūC |

)

. (20)

An illustration of how these limiters operate is provided inFigure 7. A final check is conducted to
make sure that discontinuous edge values are monotonic at any edge. If edge values are discontinu-
ous and nonmonotonic, they are both replaced by their average.

Finally, consistency checks are performed on edges slopes.For consistency, the edge slopes must
be of the same sign as that of the limitedPLM slopeσ. Each slope having the wrong sign is set to
be equal toσ. Among other choices, such as setting the slope to zero or to the one-sided slope, this
was empirically found to produce more accurate results.

Three cases need be considered: (1) The slopes are of the samesign, which is the sign ofσ.
No modification is carried out; (2) The slopes are of the same sign, which is opposite to that of
σ. Both slopes are equated toσ; (3) The left and right edge slopes may be of different sign. This
usually happens for edge slopes located on either side of an extremum, which is then taken care of
at the beginning of the algorithm through extremum detection. It may also happen, however, for
monotonic data. In that case, the slope having the wrong signis equated toσ.

2.6.2 Monotonicity enforcement

At this point of the algorithm, extrema are flattened, edge values are bounded and edge slopes are
consistent with the limitedPLM slopeσ. Yet, this does not guarantee piecewise monotonicity (see
examples thereof in Figure 8), which is now addressed.

Monotonicity is guaranteed wheneverQ(ξ) has no inflexion point (see Corollary 1). When
Q(ξ) has any inflexion point, monotonicity is guaranteed provided that the derivative ofQ(ξ) at the
location of inflexion points be of the same sign as that of the limited PLM slope (Lemma 2). That is,
the inflexion points must be consistent with thePLM slope (see, e.g., Figure 8d that features a quartic
with two consistent inflexion points). Considering the locations of inflexion points rather than the
locations of extrema is simpler because it involves parabolas rather than cubics, the former being
much more amenable to analytical manipulations.

The algorithm that enforces monotonicity functions as follows. We first check for the existence
of inflexion points by computing the roots of the second derivative ofQ(ξ), Q(2)(ξ). If none lies
in [0, 1], the quartic is monotonic. If there is at least one inflexion point, the associated slope is
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calculated at the location of each one of these inflexion points and compared with the limitedPLM

slope. If the slopes are consistent,Q(ξ) is monotonic. If the slopes are not consistent, we enforce
Q(ξ) to have two inflexion points collapse – i.e.,Q(2)(ξ) has one double root – on either edge, the
choice of which depends on the relative values of the one-sided PLM slopes. The decision is made
as follows:

|σL| ≤ |σR| ⇒ collapse inflexion points on left edge,

|σR| < |σL| ⇒ collapse inflexion points on right edge,
(21)

where the slopes are defined by Eq. (18).
Mathematical convenience is one of the motives behind the choice of having inflexion points

collapse onto either one of the edges. The other reason is that a quartic having this property, as
dictated by (21), has a single-signed curvature. The sign ofthe curvature automatically produces a
quartic that is shaped like the underlying three-cell data set (the left, center and right cell averages).
This is so because the sign of the curvature is simultaneously controlled by (a) whether the under-
lying three-cell data set increases or decreases and (b) where inflexion points are located, which,
according to (21), is also where the smallest one-sidedPLM slope is located. For example, let us
assume that the data set increases and that the smallest one-sided slope is the left one. Then, the only
possibility is a positive curvature, which means that the derivative increases from its minimum on
the left (where both inflexion points are located). This, in turn, means that the reconstructed quartic
has a steeper slope on the right, which is consistent with thefact that the right one-sided slope is
larger too (this particular case is illustrated in Figure 9).

The second derivative of the quartic,Q(2)(ξ), can be written as

Q(2)(ξ) = b0 + b1ξ + b2ξ
2, (22)

where the coefficientsb0, b1 andb2 are related to the original coefficients of the quarticQ(ξ) – see
Eqs (5) and (6) – as follows:

b0 = 2a2 = 60ū− 24uR − 36uL + 3 (u′
R − 3u′

L) ,

b1 = 6a3 = − 360ū + 36u′
L − 24u′

R + 168uR + 192uL,

b2 = 12a4 = 360ū + 30 (u′
R − u′

L)− 180 (uL + uR) .

(23)

Let ξ1 andξ2 denote the roots ofQ(2)(ξ). Those roots satisfy the following relationships:

ξ1 + ξ2 = −
b1

b2
,

ξ1ξ2 =
b0

b2
.

When both roots are located on the left edge, atξ = 0, we have

ξ1 + ξ2 = 0 ⇒ b1 = 0,

ξ1ξ2 = 0 ⇒ b0 = 0.
(24)

When the roots are located on the right edge, atξ = 1, we have

ξ1 + ξ2 = 2 ⇒ b1 = −2b2,

ξ1ξ2 = 1 ⇒ b0 = b2.
(25)

Once a decision is made as to where both inflexion points should be located, Eqs (24) and (25),
together with Eq. (23), give us relationships that must be satisfied by the four modifiable parameters:
the edge values and edge slopes. Because the edge values havea higher impact on the global
accuracy of the scheme, we prefer to first modify the edge slopes and leave the edge values intact.
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Inflexion points on the left Let us first treat the case of both inflexion points on the left.Using
Eqs (23) and (24), the edge slopes must be adjusted to

u′
L =

1

3
(10ū− 2uR − 8uL) , (26)

u′
R = −10ū + 6uR + 4uL. (27)

It may happen, however, that the above solution provides an edge slope that is inconsistent with the
limited PLM slopeσ. When this happens, the quartic curvature is still single-signed but it is not
monotonic because the derivative ofQ(ξ) reaches zero somewhere. This means that, given the edge
values, there are no consistent edge slopes that produce a monotonic quartic. Note that, because the
quartic curvature is single-signed, at most one edge slope could be inconsistent. When this situation
turns up, one of the edge values must be modified. The inconsistent edge slope is first made equal
to zero while the opposite edge slope and edge value are adjusted to build a new quartic that still
possesses both inflexion points on the left. So, if the left edge slope is inconsistent, it is set to zero
and the right edge value and slope are adjusted. If the right edge slope is inconsistent, it is set to
zero while the left edge value and slope are adjusted. Mathematically, if u′

Lσ < 0 then

u′
L = 0,

uR = 5ū− 4uL,

u′
R = 20 (ū− uL) ,

(28)

and ifu′
Rσ < 0 then

u′
R = 0,

uL =
1

2
(5ū− 3uR) ,

u′
L =

10

3
(−ū + uR) .

(29)

The adjustments (28) and (29), if carried out, are definitivein that the associated quartic is guaranteed
to be monotonic and bounded by neighboring cell averages. Monotonicity directly follows from the
fact that both edge slopes are consistent and that the curvature is single-signed. Boundedness is
ensured by the property that the adjusted edge values are themselves bounded by their previous
values and the cell average. This can be shown as follows. Without loss of generality, we assume
that the underlying data set is increasing. We further assume that both edge values are bounded and
that the edge slopes have been adjusted according to (26)-(27) to produce a quartic with inflexion
points on the left. Now, we make the final assumption that the left edge slope is negative and,
therefore, inconsistent (because the set of cell averages is increasing). Using (26), the right edge
value is equal to

uR = 5ū− 4uL −
3

2
u′

L > 5ū− 4uL, (30)

the last inequality holding true because the left edge slopeis negative. Because the left edge slope
is inconsistent and set to zero, the right edge value is adjusted to5ū − 4uL, following (28). As
expressed by the inequality (30), this new edge value is smaller than the previous value, before
adjustment. SinceuL < ū, it also remains bounded below by the cell average. Hence, the adjusted
right edge value remains bounded by neighboring cell averages. The same reasoning applies for the
case where the right edge slope is inconsistent and the left edge value must be adjusted (see Figure
10 for illustrations of both cases).
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Inflexion points on the right The case where both inflexion points collapse onto the right edge is
treated in a similar fashion. Using Eqs (23) and (25) , we find that the edge slopes must be adjusted
to

u′
L = 10ū− 4uR − 6uL, (31)

u′
R =

1

3
(−10ū + 8uR + 2uL) . (32)

Again, one of these slopes could be inconsistent with respect to the limitedPLM slopeσ. When this
occurs, the inconsistent edge slope is set to zero while the opposite edge slope and edge value are
adjusted to produce a quartic that still has both inflexion points on the right. Ifu′

Lσ < 0 then

u′
L = 0,

uR =
1

2
(5ū− 3uL) ,

u′
R =

10

3
(ū− uL) ,

(33)

and ifu′
Rσ < 0 then

u′
R = 0,

uL = 5ū− 4uR,

u′
L = 20 (−ū + uR) .

(34)

In both cases, (33) and (34) provide adjusted edge values that are bounded by the cell average and
the previous value, before adjustment. Hence, the quartic obtained is both monotonic and bounded.

2.6.3 Overall algorithm

The overall algorithm is now summarized.

1. Check whether the current cell average is an extremum. If so, flatten the quartic (a piecewise
constant is used).

2. Check whether the edge values are bounded by the neighboring cell averages. If not, use (19)
and (20) to bound the left and right edge values, respectively.

3. Check whether the edge slopes are consistent, that is, of the same sign as that of the limited
PLM slopeσ. If not, substituteσ for any inconsistent edge slope.

4. Check for the existence of inflexion points in[0, 1]. The quartic is bounded and monotonic
(i.e., definitive) in the following cases: (a) no inflexion point, (b) one consistent inflexion point
and (c) two consistent inflexion points. On the other hand, ifone inflexion point is inconsistent
(see e.g., Figure 8a-c), we enforce monotonicity by having both inflexion points collapse on
either one of the edges, the choice of which depends on the following criteria:

(i) if the left one-sidedPLM slope has a smaller absolute magnitude than that of the right
one (σL <= σR), both inflexion points are shifted to the left edge. This is done by
modifying the edge slopes via Eqs (26)-(27) and, if required, by readjusting one if the
edge values via Eq. (28) or Eq. (29).

(ii) otherwise, both inflexion points are shifted to the right edge. Edge slopes are modified
using Eqs (31)-(32) and, if necessary, one of the edge valuesis readjusted by using Eq.
(33) or Eq. (34).
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The first phase of the algorithm comprises steps (1)-(3) and provides bounded edge values and
consistent edge slopes. The second phase of the algorithm, step (4), modifies the edge slopes and,
if necessary, the edge values in order to obtain a monotonic quartic within each cell. In addition
to edge-value boundedness and edge-slope consistency, this monotonicity constraint is a sufficient
condition for having a remapping scheme that neither creates new extrema nor amplify existing ones.
Yet, this condition is not necessary since a nonmonotonic quartic that is nevertheless everywhere
bounded by neighboring cell averages will also yield a remapping scheme having these properties.
Nonetheless, quartics that are nonmonotonic may lead to artificial steepening, a property that is
usually beneficial to resolve extrema but may unrealistically steepen smooth profiles. Illustrations
of the second phase of the algorithm are shown in Figure 10. The first phase is more straightforward
and was partly presented in Figure 7.

3 Advection as a particular case of remapping

Let us assume that the following one-dimensional advectionequation is to be solved on the peri-
odic domain[0, 1]:

∂u

∂t
+

∂u

∂x
= 0, (35)

where the scalaru is the advected quantity and the advective velocity is unity. On a fixed grid, finite-
volume advection schemes typically rely on fluxes across cell interfaces. Those fluxes are computed
based on cellwise reconstructions. For CFL numbers greaterthan one, the computation of fluxes
becomes less straightforward since they not only involve adjacent cells but also cells located further
away. Therefore, a more natural way of thinking of advectionis as a remapping scheme. At a given
time step, the global profile is reconstructed by means of piecewise polynomials, shifted forwards
(for positive advection speed) over a distance covered in one time step and overlaid on the grid to
compute the new cell averages. Equivalently, the grid can bethought of being shifted backwards.
This easily provides a way to advect quantities on nonuniform grids for CFL numbers greater than
unity.

In this section, a dispersion analysis of unlimited remapping schemes is presented for the solu-
tion to Eq. (35) on uniform grids and CFL numbers smaller thanunity. We then compare the limited
schemes in their ability to accurately solve Eq. (35) on uniform and nonuniform grids for various
initial conditions on periodic domains.

3.1 Dispersion analysis

Let us assume the grid to be uniform of cell sizeh. The time step is denoted by∆t and the CFL
number is denoted byµ = ∆t/h. A flux-form, explicit, discrete version of Eq. (35) is

ūn+1
j = ūn

j + qn
j− 1

2
− qn

j+ 1
2
, (36)

whereqn
j− 1

2

andqn
j+ 1

2

are the fluxes across edgesj − 1
2 andj + 1

2 , respectively, that is the incoming

and outgoing fluxes, respectively. The fluxes are computed asfollows

qn
j− 1

2
=

∫ 1

1−µ

Rj−1(ξ) dξ,

qn
j+ 1

2
=

∫ 1

1−µ

Rj(ξ) dξ,
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whereRj is the local polynomial reconstruction in cellj. The local polynomialRj depends on the
edge-value estimates (and also the edge-slope estimates incase ofPQM), which, in turn, depend
on cell averages. Hence, the fluxes can be expressed explicitly in terms of cell averages by using
formulae presented in Sections 2.3 and 2.4.

Assuming that the solution̄un
j takes on the form of a single Fourier mode, we can write

ūn
j = exp [i (κjh− ωn∆t)] ,

which can be used in Eq. (36) to obtain the discrete dispersion relation betweenω∆t andκh at a
given CFL numberµ. Since all terms in the left-hand side of Eq. (36) are considered at the same
time step, the time component of the Fourier mode can be factored out, which gives rise to

exp (−iω∆t) = 1 + Qin −Qout,

or
ω∆t = i ln (1 + Qin −Qout) , (37)

whereln is the natural logarithm andQin andQout are the incoming and outgoing fluxes, respectively,
expressed in terms of exponentials that translate the spatial dependence of the fluxes. The fluxes
depend on the reconstruction polynomial and on the edge values and edge slopes. The algebra is
tedious and Eq. (37) is solved usingMATLAB . The real part of the solution is indicative of the phase
error while the imaginary part gives information on the amount of numerical diffusion introduced
by the discretization. Results are shown in Figure 11 for a CFL number of 0.25.

The best candidates arePPM ih4 and PQM ih6/ih6, which introduce less numerical diffusion
and exhibit better phase properties.PQM ih4/ih4 also has good properties but is only fourth-order
accurate, which, as already mentioned, is considered wasteful in that PQM should at least be fifth-
order accurate.

3.2 Numerical experiments

We now perform traditional advection experiments in a periodic domain, starting with the follow-
ing initial condition, inspired by [5] :

f =



















































exp

[

−
(x− 0.125)

2

0.0003

]

if 0.075 ≤ x ≤ 0.175,

1 if 0.325 ≤ x ≤ 0.425,

1− 20|x− 0.625| if 0.575 ≤ x ≤ 0.675,
[

1− 400 (x− 0.875)
2
]1/2

if 0.825 ≤ x ≤ 0.925,

0 otherwise.

(38)

The unlimited versions ofPPMandPQM are first used and the results are presented in Figure 12. The
limited versions are then considered to run the advection test on uniform and nonuniform grids, with
results shown in Figures 13 and 14, respectively. In all cases, the grid has 160 cells and results are
presented after 10 revolutions. All experiments show thatPQM schemes outperformPPM schemes,
which is especially visible for the limited cases.

At low resolutions, the dispersion analysis suggests thatPPM ih4 would outperformPQM h5/h4

by being less diffusive, especially to resolve higher wavenumers (Figure 11). This property is con-
firmed in Figure 15. However, the advantage ofPPM ih4 over PQM h5/h4 is lost when the limited
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versions of these schemes are used because both schemes yield similar results. In the limited cases,
all PQM advection schemes perform better, all resolutions considered.

Similarly to thePQM limiter, thePPM limiter also operates in two phases. The first one guarantees
boundedness of edge values using Eqs (19) and (20). The second phase enforces monotonicity by
adjusting one of the edge values (see [4] for details on this phase) to shift the extremum, if any, onto
an edge. Finally, extrema in the data set are represented by piecewise constants.

3.3 Convergence analysis

A convergence analysis is carried out on uniform grids for the advection of a Gaussian in a pe-
riodic domain. Results are shown in Figure 16 for a CFL numberof 0.25 and after one revolution.
The convergence rates are established with respect to the Euclidian norm, defined by

||e||eucl =





N
∑

j=1

|ūj − ūj,EXACT|
2





1/2

, (39)

whereūj,EXACT is the exact average in cellj, as computed using the exact analytical solution. Note
that the Euclidian norm is a better measure than theL2 norm for computing advection errors since
the objective is to evaluate how cell averages are transported by the advection scheme. In this
respect, reconstruction is merely a means to achieve this objective.

For unlimited advection schemes, convergence rates are very similar to that obtained for the un-
limited reconstruction schemes. In particular, it is notedthat thePQM h6/h5 andih6/ih6 schemes
are both sixth-order accurate. At low resolution,PQM ih4/ih4 outperformsPQM h5/h4. This situa-
tion is reversed at higher resolution as the fourth-order accurate scheme is outpaced by the fifth-order
accurate scheme. As was already the case for the reconstruction convergence analysis, convergence
rates on nonuniform grids are roughly the same and are not shown. All limited schemes exhibit
second-order accuracy because the global error is dominated by the first-order accuracy in the res-
olution of the Gaussian extremum. Since the grid size is divided by two at every step of the con-
vergence analysis, this local error decreases by four, which yields second-order accuracy. However,
this should not conceal the fact that, on a given grid,PQM schemes are globally more accurate (see
Figures 13 - 15).

4 Treatment of boundaries

We now turn our attention on estimating the edge values and slopes at the boundaries. We limit
our discussion to the following schemes:PPMh4, PPMih4, PQM ih4/ih3 andPQM ih6/ih5, because
they turn out to be the most effective. The concepts presented here are readily applicable to other
schemes.

For PPM h4, edge values are estimated by using fourth-order polynomials spanning four cells.
Thus, this scheme is not directly applicable to the first and last two edges for which another approach
must be considered. One possibility is to gradually decrease the order of accuracy of these estimates,
down to a first-order estimate at the boundary where the edge value is taken to be equal to the
boundary cell average. Another approach, which we advocate, is to resort to one-sided fourth-order
polynomials so that the same order of accuracy is preserved throughout the domain. Hence, the first
and last two edge values are estimated by using the polynomial spanning the first and last four cells,
respectively. On uniform grids, the first and second one-sided, fourth-order edge-value estimates are
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given by

u1 =
1

12
[25ū1 − 23ū2 + 13ū3 − 3ū4] ,

u2 =
1

12
[3ū1 + 13ū2 − 5ū3 + ū4] .

(40)

Similarly, the last two edge-value estimates are given by (assuming the grid comprisesN cells)

uN =
1

12
[ūN−3 − 5ūN−2 + 13ūN−1 + 3ūN ] ,

uN+1 =
1

12
[−3ūN−3 + 13ūN−2 − 23ūN−1 + 25ūN ] .

(41)

We note that, on nonuniform grids, these edge values are estimated by first computing the coeffi-
cients of the polynomials spanning the first and last four cells. These polynomials are then evaluated
at the locations of the first and last three edges, respectively, to obtain the edge-value estimates. This
approach is more computationally efficient than resorting to a closed-form expression such as Eq.
(50) because once the polynomial is computed, it can be used three times. The coefficients of the
polynomial are found by solving a linear system based on the relationships (8).

In addition to being more accurate and having better dispersion properties thanPPMh4, PPM ih4

better handles boundaries because it uses a shorter stencil. In particular, the implicit relationship
(13) – with a = d = 0 – can be written for both the second and second to last edges. Only the
boundary edge values need to be prescribed in order for the tridiagonal system to be solvable. This
is done by using the one-sided, fourth-order explicit estimatesu1 anduN+1, as given by (40) and
(41). Since all edge-value estimates are linked, the accuracy of the boundary edge-value estimates
has an influence on all other interior estimates. Therefore,it is important to use a fourth-order
scheme to estimate the boundary edge values (even though theaccuracy of the edge-value estimates
at the boundaries may be subsequently reduced by the limiter).

The boundary treatment forPQM ih4/ih3 is not different from that considered forPPM ih4.
In addition to prescribing the boundary edge values, we alsoneed to prescribe the boundary edge
slopes. These boundary conditions are enforced by using thesame fourth-order accurate polynomial
spanning four cells. The boundary edge value is computed by evaluating the polynomial at the
boundary while the slope is computed by evaluating the derivative of the polynomial. For uniform
grids, third-order boundary edge slopes are given by

u′
1 =

1

12h
[−11ū1 + 45ū2 − 69ū3 + 35ū4] ,

u′
N+1 =

1

12h
[−35ūN−3 + 69ūN−2 − 45ūN−1 + 11ūN ] .

(42)

The PQM ih6/ih5 scheme requires a little more work. Because the sixth-orderimplicit scheme
(13) spans four cells, it can only be written for edges 3 toN − 1 and sixth-order estimates must be
provided for the first and last two edge values. We propose to use one-sided, sixth-order implicit
schemes for the second and second to last edges and sixth-order explicit estimates at the boundaries
to close the tridiagonal system. A left-sided implicit scheme can be written as

αuj− 1
2

+ uj+ 1
2

+ βuj+ 3
2

= aūj + būj+1 + cūj+2 + dūj+3, (43)

which is an expression between four cell averages and the three leftmost edge values of the stencil.
Unlike Eq. (13), the above relationship can be written for the second edge value. Similarly, a
right-sided implicit scheme is given by

αuj− 1
2

+ uj+ 1
2

+ βuj+ 3
2

= aūj−2 + būj−1 + cūj + dūj+1 (44)
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and expresses four cell averages in terms of the rightmost edge values of the stencil. It can be utilized
with respect to the second to last edge value. The coefficientsα, β, a, b, c andd of Eqs (43) and (44)
are given in Table 3 for uniform grids and in the Appendix for nonuniform grids via the solutions
to linear systems. As for the edge values, writing implicit relationships for the second and second
to last edge slopes requires to resort to one-sided formulae, which are now presented. A left-sided
implicit scheme can be written as

αu′
j− 1

2
+ u′

j+ 1
2

+ βu′
j+ 3

2
= aūj + būj+1 + cūj+2 + dūj+3, (45)

which is an expression between four cell averages and the three leftmost edge slopes of the stencil.
Similarly, a right-sided implicit scheme is given by

αu′
j− 1

2
+ u′

j+ 1
2

+ βu′
j+ 3

2
= aūj−2 + būj−1 + cūj + dūj+1 (46)

and expresses four cell averages in terms of the rightmost edge slopes of the stencil. The coefficients
α, β, a, b, c andd of Eqs (45) and (46) are given in Table 4 for uniform grids and in the Appendix
for nonuniform grids via the solutions to linear systems. The tridiagonal systems for the edge values
and slopes are closed by prescribing the following sixth-order boundary edge values:

u1 =
1

720
[1764ū1 − 2556ū2 + 2844ū3 − 1956ū4 + 744ū5 − 120ū6] ,

uN+1 =
1

720
[−120ūN−5 + 744ūN−4 − 1956ūN−3 + 2844ūN−2 − 2556ūN−1 + 1764ūN ] ,

(47)
and fifth-order boundary edge slopes:

u′
1 =

1

720h
[−3248ū1 + 9280ū2 − 11780ū3 + 8540ū4 − 3340ū5 + 548ū6] ,

u′
N+1 =

1

720h
[−548ūN−5 + 3340ūN−4 − 8540ūN−3 + 11780ūN−2 − 9280ūN−1 + 3248ūN ] .

(48)
Expressions (47) and (48) are valid for uniform grids. On nonuniform grids, the coefficients of the
boundary polynomials are first computed. The polynomials and their derivatives are then evaluated
at the boundary to give the boundary edge values and slopes.

The order of accuracy of the boundary conditions has a nonnegligible influence on the overall
quality of solutions to unlimited remapping experiments ina closed domain. In Figure 17, the
reconstructed profiles are shown after 1000 remapping cycles. Each cycle comprises four steps: (i)
reconstruction on grid A, (ii) remapping onto grid B (different than grid A and for each cycle), (iii)
reconstruction on grid B and (iv) remapping back onto grid A.In Figure 17, grid A is a 20-cell
uniform grid and grid B is an 18-cell nonuniform grid. For each experiment, the initial condition is
a set of cell averages based on the exact profile. At each cycle, information is lost when grids A and
B are different. The best schemes are those for which this loss is the smallest. The overall quality
of the solutions is impaired when low-order boundary conditions are used. Low-order boundary
conditions consist in setting the boundary edge values equal to the boundary cell averages and setting
the boundary edge slopes equal to zero. This is equivalent toconsidering a constant approximation at
the boundary. ForPPMh4, the second and second to last edge values are made equal to second-order
estimates using adjacent cell averages. As a sanity check, it was verified that allPPMschemes could
exactly (i.e., to machine accuracy) reproduce parabolas and that PQM ih4/ih3 and PQM ih6/ih5

could exactly reproduce cubics and quartics, respectively. In Figure 18, a convergence analysis is
conducted for which the remapping experiments, as described above, are carried out on gradually
finer grids. Using low-order boundary conditions reduces the order of accuracy of all schemes to
2.5 whereas high-order boundary conditions allow to preserve the nominal orders of accuracy.
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5 Computational cost

The relative computational costs ofPPM and PQM schemes are now briefly investigated on the
basis of remapping experiments in closed domains, as described in Figure 17b (high-order boundary
conditions are used). The errors and elapsed computationaltimes are reported in Table 5 for un-
limited and limited remapping experiments consisting of 20000 cycles between a uniform 100-cell
grid and a nonuniform 90-cell grid. Both the unlimited and limited versions ofPQM schemes are
more cost-effective than theirPPM counterparts. In particular, the error incurred by the unlimited
PQM ih6/ih5 scheme is decreased by more than three orders of magnitude compared withPPM h4

for only a 30% extra cost. The same tendency occurs for the limited versions of these schemes,
although not as dramatically. Whereas the unlimitedPPM h4 scheme is cheaper than the unlimited
PPM ih4 scheme, the opposite is true for the limited versions of these schemes. That is, the limited
PPM ih4 scheme turns out to be cheaper than the limitedPPM h4 scheme (see Table 5). This origi-
nates from the fact thatih4 edge-value estimates are more accurate thanh4 estimates and the limiter
does not need to be activated as often with the former, makingPPMih4 relatively less expensive. For
the same reason, limitedPQM schemes are not as expensive as unlimitedPQM schemes, in relative
terms.

Given a target error, Table 6 shows the grid resolution needed and computational times incurred
to attain that error for different unlimited and limited schemes. The remapping experiment is the
same as that described in Figure 17b. Note that different target errors are considered for the unlimited
and limited cases. For a given error,PPMh4 is almost five times more expensive thanPQM ih6/ih5

for the unlimited versions of these schemes. The extra cost amounts to 10% for the limited versions.

6 Conclusion

We have presented a hierarchy of one-dimensional high-order remapping schemes and inves-
tigated their performance with respect to accuracy, convergence rate and dispersion. The schemes
have also been compared based on traditional advection experiments in periodic domains and remap-
ping experiments in closed domains. We have introduced the new PQM scheme that is based on
fifth-order accurate piecewise quartics. A limiter for thisscheme has been fully described that never
decreases the polynomial degree, except at the location of extrema where piecewise constants are
used.PPM has also been revisited and compared withPQM by using a series of high-order explicit
and implicit (i.e., compact) estimates for the edge values and slopes, with significant improvements
gained when using implicit estimates.

All analyses have been carried out in one dimension because our main focus is the improvement
of vertical coordinate systems in hybrid ocean models. However, we believe that the material pre-
sented is also applicable to higher dimensions. In fact, theuse ofPPM advection schemes is not
uncommon [e.g., 14] and, in that respect, some of the improvements presented in this paper could
be directly used in existing algorithms.

Based on the analysis of computational costs, it is found that PQM ih6/ih5 is by far the most
cost-effective scheme when it is unlimited and remains veryadvantageous when the limiter is acti-
vated. It is also shown that all limitedPQM schemes perform significantly better than limitedPPM

schemes. Moreover, we note that the limitedPQM scheme has room for improvement, and it would
certainly benefit from state-of-the-art monotonicity-preserving limiters that are currently used for
PPM schemes [e.g., 17].
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A Estimates of edge values and slopes on nonuniform grids

Some estimates for edge values and slopes are now provided for nonuniform grids. Since not all
schemes are recommended, we limit ourselves toPPMh3, PPMh4, PPM ih4, PQM ih4/ih3 andPQM

ih6/ih5.

A.1 Edge values

A.1.1 Explicit schemes

Third-order estimates are given by

uj− 1
2

=
(h1 + h2) (h1ū0 + h0ū1)

(h0 + h1) (h0 + h1 + h2)
+

(2h1 + h2) h0ū1 − h0h1ū2

(h1 + h2) (h0 + h1 + h2)
,

uj+ 1
2

=
(h0 + 2h1) h2ū1 − h1h2ū0

(h0 + h1) (h0 + h1 + h2)
+

(h0 + h1) (h2ū1 + h1ū2)

(h1 + h2) (h0 + h1 + h2)
,

(49)

whereū0 = ūj−1, ū1 = ūj , ū2 = ūj+1 andh0 = hj−1, h1 = hj , h2 = hj+1.

Fourth-order estimates are given by

uj− 1
2

=
1

h0 + h1 + h2 + h3
×

{

(h0 + h1) (h2 + h3)

(h1 + h2)
(ū1h2 + ū2h1)

(

1

h0 + h1 + h2
+

1

h1 + h2 + h3

)

+
h2 (h2 + h3)

(h0 + h1 + h2) (h0 + h1)
[ū1 (h0 + 2h1)− ū0h1]

+
h1 (h0 + h1)

(h1 + h2 + h3) (h2 + h3)
[ū2 (2h2 + h3)− ū3h2]

}

(50)

where ū0 = ūj−2, ū1 = ūj−1, ū2 = ūj , ū3 = ūj+1 andh0 = hj−2, h1 = hj−1, h2 = hj ,
h3 = hj+1. The right-hand side edge value,uj+ 1

2
, is simply obtained by translating the index to the

right by one unit.

A.1.2 Implicit schemes

The coefficients in Eq. (13) for the fourth-order estimates are given by

α =
h2

1

(h0 + h1)
2 ,

β =
h2

0

(h0 + h1)
2 ,

a = 0,

b = 2h2
1

h2
1 + 2h2

0 + 3h0h1

(h0 + h1)
4 ,

c = 2h2
0

h2
0 + 2h2

1 + 3h0h1

(h0 + h1)
4 ,

d = 0,

(51)
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whereh0 = hj , h1 = hj+1. It turns out that computing the coefficients (51) has a cost of 36
multiplications and 8 additions. Alternatively, we might as well compute the coefficients by solving
the following linear system









1 1 −1 −1
−2h0 2h1 h0 h1

3h2
0 3h2

1 −h2
0 −h2

1

−4h3
0 4h3

1 h3
0 −h3

1

















α
β
b
c









=









−1
0
0
0









, (52)

which has a cost of 36 multiplications and 26 additions to solve the system, assuming that a standard
Gaussian elimination is used. This is in addition to the costof setting up the system. So, there is
no clear computational advantage in using the closed-form expressions. As the order of accuracy
increases, it becomes computationally cheaper to calculate the coefficients of the implicit scheme
by solving a linear system. In addition, algebraic manipulations involved in the computation of
closed-form solutions become quickly intractable.

The coefficients in Eq. (13) for the implicit sixth-order estimates are given by the solution to the
following linear system:

















1 1 −1 −1 −1 −1
−2h1 2h2 −∆2 h1 −h2 −∇2

3h2
1 3h2

2 ∆3 −h2
1 −h2

2 −∇3

−4h3
1 4h3

2 −∆4 h3
1 −h3

2 −∇4

5h4
1 5h4

2 ∆5 −h4
1 −h4

2 −∇5

−6h5
1 6h5

2 −∆6 h5
1 −h5

2 −∇6
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






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


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



α
β
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d

















=

















−1
0
0
0
0
0

















, (53)

where

∆k =
hk

1 − (h0 + h1)
k

h0
,

∇k =
(h2 + h3)

k
− hk

2

h3
,

with h0 = hj−1, h1 = hj , h2 = hj+1, h3 = hj+2.
The coefficients in Eq. (43) for the left-sided, implicit sixth-order estimates are given by the

solution to the following linear system:
















1 1 −1 −1 −1 −1
−2(h0 + h1) 0 −∆2 h1 −h2 −∇2

3(h0 + h1)
2 0 ∆3 −h2

1 −h2
2 −∇3

−4(h0 + h1)
3 0 −∆4 h3

1 −h3
2 −∇4

5(h0 + h1)
4 0 ∆5 −h4

1 −h4
2 −∇5

−6(h0 + h1)
5 0 −∆6 h5

1 −h5
2 −∇6
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


























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β
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b
c
d
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











=

















−1
2h1

−3h2
1

4h3
1

−5h4
1

6h5
1

















, (54)

where

∆k =
hk

1 − (h0 + h1)
k

h0
,

∇k =
(h2 + h3)

k
− hk

2

h3
,

with h0 = hj , h1 = hj+1, h2 = hj+2, h3 = hj+3.
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The coefficients in Eq. (44) for the right-sided, implicit sixth-order estimates are given by the
solution to the following linear system:

















1 1 −1 −1 −1 −1
0 2(h2 + h3) −∆2 h1 −h2 −∇2
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2 −∇3

0 4(h2 + h3)
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1 −h3
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4 ∆5 −h4

1 −h4
2 −∇5

0 6(h2 + h3)
5 −∆6 h5

1 −h5
2 −∇6


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




















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
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α
β
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c
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






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


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
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







−1
−2h2

−3h2
2

−4h3
2

−5h4
2

−6h5
2

















, (55)

where

∆k =
hk

1 − (h0 + h1)
k

h0
,

∇k =
(h2 + h3)

k
− hk

2

h3
,

with h0 = hj−2, h1 = hj−1, h2 = hj , h3 = hj+1.

A.2 Edge slopes

The coefficients in Eq. (16) for the implicit third-order estimates are given by

α =
h1

(

h2
0 + h0h1 − h2

1

)

(h0 + h1)
[

(h0 + h1)
2

+ h0h1

] ,

β =
h0

(

h2
1 + h0h1 − h2

0

)

(h0 + h1)
[

(h0 + h1)
2

+ h0h1

] ,

a = 0,

b =
−12h0h1

(h0 + h1)
[

(h0 + h1)
2

+ h0h1

] ,

c =
12h0h1

(h0 + h1)
[

(h0 + h1)
2

+ h0h1

] ,

d = 0,

(56)

whereh0 = hj , h1 = hj+1.
The coefficients in Eq. (16) for the implicit fifth-order estimates are given by the solution to the

following linear system:
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0 0 1 1 1 1
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
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
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
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
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, (57)
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where

∆k =
hk

1 − (h0 + h1)
k

h0
,

∇k =
(h2 + h3)

k
− hk

2

h3
,

with h0 = hj−1, h1 = hj , h2 = hj+1, h3 = hj+2.
The coefficients in Eq. (45) for the left-sided, implicit fifth-order estimates are given by the

solution to the following linear system:
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
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





, (58)

where

∆k =
hk

1 − (h0 + h1)
k

h0
,

∇k =
(h2 + h3)

k
− hk

2

h3
,

with h0 = hj , h1 = hj+1, h2 = hj+2, h3 = hj+3.
The coefficients in Eq. (46) for the right-sided, implicit fifth-order estimates are given by the

solution to the following linear system:













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0 0 1 1 1 1
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1 h2

2 ∇3

0 −12(h2 + h3)
2 ∆4 −h3

1 h3
2 ∇4
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1 h4
2 ∇5

0 −30(h2 + h3)
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1 h5
2 ∇6
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
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
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







=










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



0
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6h2
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2

20h3
2
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2

















, (59)

where

∆k =
hk

1 − (h0 + h1)
k

h0
,

∇k =
(h2 + h3)

k
− hk

2

h3
,

with h0 = hj−2, h1 = hj−1, h2 = hj , h3 = hj+1.
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reconstruction at either cell edge. . . . . . . . . . . . . . . . . . . . .. . . . . . 38

27



8 Examples of quartics that can be built based on bounded edgevalues and consistent
edge slopes. The limitedPLM slopeσ is assumed to be positive, as are the edge
slopes. (a) The quartic is neither monotonic nor bounded by neighboring cell aver-
ages. It features two inflexion points, one of which is inconsistent with respect toσ.
(b) The quartic is nonmonotonic but is bounded and it also hastwo inflexion points,
one of them being inconsistent. (c) The quartic is nonmonotonic and bounded. It
has one inconsistent inflexion point. (d) The quartic is monotonic, bounded and it
has two consistent inflexion points. Reconstructed quartics (a-c) are not acceptable
while quartic (d) is acceptable. . . . . . . . . . . . . . . . . . . . . . . .. . . . . 39

9 Dashed and solid curves are unlimited and limited quartics, respectively. Cell av-
erages are represented by horizontal lines spanning the entire cell. Limiting is con-
ducted by enforcing both inflexion points to collapse on one of the edges. This is
done by adjusting the edge slopes. (a) Inflexion points are located on the left edge.
Curvature is positive, which is the only possibility that does not violate local con-
servation (the quartic average must be equal to the cell average). (b) Inflexion points
are located on the right edge. Curvature is negative. In bothexamples, the unlimited
quartics have bounded edge values and consistent edge slopes (positive). Yet, they
have inconsistent inflexion points. . . . . . . . . . . . . . . . . . . . .. . . . . . 40

10 In both examples, the quarticQ1 obtained after the first step of the limiting algorithm
is nonmonotonic but the edge values are bounded and the edge slopes are consistent.
The second step of the algorithm guarantees monotonicity byhaving both inflexion
points collapse onto one of the edges (the left edge in these examples). A first-
attempt quarticQ∗

2 is produced that has a single-signed curvature, which is done
by adjusting the edge slopes via (26)-(27) (or via (31)-(32)when inflexion points
are located on the right edge). If one of the adjusted edge slopes is inconsistent, it is
necessary to adjust the opposite edge value to obtain the definitive monotonic quartic
Q2. (a) The first-attempt quarticQ∗

2 has an inconsistent left slope. Monotonicity
is restored by setting the slope to zero and adjusting the right edge value, which
produces the quarticQ2. (b) Q∗

2 has an inconsistent right slope. The monotonic
quarticQ2 is obtained by setting this slope to zero and adjusting the left edge value. 41

11 Dispersion relations for unlimitedPPM andPQM advection schemes using Eq. (36),
on uniform grids with a CFL number of 0.25. The left panel is indicative of nu-
merical diffusion while the right panel shows the phase error. All explicit schemes
are the most diffusive and feature the largest phase error for higher wavenumbers
(shorter wavelengths) relative to the grid size. The best candidates arePPM ih4 and
PQM ih6/ih6, which introduce less numerical diffusion and exhibit better phase
properties.PQM ih4/ih4 also has good properties but is only fourth-order accurate.
To be noted is the underperforming phasal behavior ofPPM h4, which is the origi-
nal PPM scheme. Schemes using explicit and implicit estimates for the edge values
and slopes are represented with dashed and solid lines, respectively. Blue and red
lines are used forPPM and PQM schemes, respectively. Shown values forκh

π are
equivalent to wavelengths of, from left to right:8h, 6h, 5h, 4h, 3h and2h. . . . . . 42

12 Unlimited advection experiments on uniform grids, in a periodic domain. Compari-
son of the advected solutions with the exact solution (blackline) after 10 revolutions
for a selection of unlimited (a)PPM schemes and (b)PQM schemes. The initial con-
dition is given by Eq. 38. The grid has 160 cells and the CFL number is 0.25. The
interpolation between cell averages is not the reconstructed profile and is drawn for
visual convenience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 43
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13 Limited advection experiments on uniform grids, in a periodic domain. Comparison
of the advected solutions with the exact solution (black line) after 10 revolutions for
a selection of limited (a)PPM schemes and (b)PQM schemes. The initial condition
is given by Eq. 38. The grid has 160 cells and the CFL number is 0.25. The
interpolation between cell averages is not the reconstructed profile and is drawn for
visual convenience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 44

14 Limited advection experiments on nonuniform grids, in a periodic domain. Com-
parison of the advected solutions with the exact solution (black line) after 10 revo-
lutions for a selection of limited (a)PPM schemes and (b)PQM schemes. The initial
condition is given by Eq. 38. The grid has 160 cells and the CFLnumber is 0.25
relative to the smallest grid cell. The interpolation between cell averages is not the
reconstructed profile and is drawn for visual convenience. .. . . . . . . . . . . . . 45

15 Advection of a Gaussian on a low-resolution uniform grid containing 20 cells. The
domain is periodic and results are shown after one revolution (CFL number is 0.25).
(a) The unlimitedPPM ih4 scheme outperformsPQM h5/h4, the latter being slightly
more diffusive as suggested by the dispersion analysis in Figure 11. (b) The limi-
tation of PPM ih4 somewhat inhibits its intrinsic performance, as it now performs
similarly to PQM h5/h4. The interpolation between cell averages is not the recon-
structed profile and is drawn for visual convenience. . . . . . .. . . . . . . . . . . 46

16 Orders of accuracy of (a) unlimited and (b) limited advection schemes for a Gaussian
on uniform grids. Convergence rates are given next to the scheme name, between
parentheses, and are established with respect to the Euclidian norm defined by Eq.
(39). The convergence rates are roughly the same on nonuniform grids and are
not shown. Note the sixth-order accuracy ofPQM h6/h5 andPQM ih6/ih6. Also,
notice howPQM ih4/ih4 performs better thanPQM h5/h4 at lower resolution but is
outpaced at higher resolution. The convergence rates for the unlimited schemes are
the same as that obtained for unlimited reconstruction in Figure 5. The resolution of
the Gaussian extremum is only second-order accurate, whichis dominant for limited
schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

17 Unlimited remapping experiments in a closed domain using(a) low-order bound-
ary conditions and (b) high-order boundary conditions. Each remapping cycle com-
prises the following steps: (i) reconstruction on a uniformgrid composed of 20 cells,
(ii) remapping onto a nonuniform grid composed of 18 cells that changes at each cy-
cle, (iii) reconstruction on the nonuniform grid and (iv) remapping back onto the
uniform grid. The light gray, thick line is the exact solution and the black thin lines
represent the reconstructed profiles on the uniform grid, shown after 1000 remap-
ping cycles. Notice the strong influence of the boundary conditions on the overall
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

18 Convergence analysis for the unlimited experiment described in Figure 17 and car-
ried out on gradually finer grids. For each grid, 500 remapping cycles are conducted
and theL2-norm of the error is computed between the exact and reconstructed pro-
files. (a) Low-order boundary conditions are used, which reduces the convergence
rate down to 2.5 for all schemes. (b) High-order boundary conditions allow to pre-
serve the nominal order of accuracy of all schemes. . . . . . . . .. . . . . . . . . 49
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Order of accuracy α β a b c d

4 (ih4) 1
4

1
4 0 3

4
3
4 0

5 (ih5) 1
2

1
6

1
18

19
18

5
9 0

6 (ih6) 1
12

1
12

1
36

29
36

29
36

1
36

Table 1: Coefficients to use in Eq. (13) giving implicit edge-value estimates on uniform grids.

Order of accuracy α β a b c d

4 (ih4) 1
10

1
10 0 − 6

5h
6
5h 0

6 (ih6) 2
11

2
11 − 3

44h − 51
44h

51
44h

3
44h

Table 2: Coefficients to use in Eq. (16) giving implicit edge-slope estimates on uniform grids.

Scheme α β a b c d

Left-sided, Eq. (43) 1
8

3
4

43
96

123
96

15
96 − 1

96

Right-sided, Eq. (44) 3
4

1
8 − 1

96
15
96

123
96

43
96

Table 3: Coefficients to use in Eqs (43) and (44) giving one-sided, sixth-orderimplicit edge-value estimates on
uniform grids.

Scheme α β a b c d

Left-sided, Eq. (45) 1
10 − 7

20 − 99
80h

141
80h − 45

80h
3

80h

Right-sided, Eq. (46) − 7
20

1
10 − 3

80h
45
80h − 141

80h
99
80h

Table 4: Coefficients to use in Eqs (45) and (46) giving one-sided, sixth-orderimplicit edge-slope estimates on
uniform grids.
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Unlimited Limited

Error CPU time Error CPU time

PPMh4 4.915566× 10−3 1.00 2.119396× 10−2 1.00

PPM ih4 4.978881× 10−3 1.06 1.876330× 10−2 0.95

PQM ih4/ih3 2.621667× 10−4 1.17 1.224886× 10−2 1.01

PQM ih6/ih5 3.606455× 10−6 1.30 1.017189× 10−2 1.13

Table 5: Errors (L2-norm) and computational times (relative toPPM h4) for unlimited and limited remapping
experiments in a closed domain (as described in Figure 17b). For each run, 20000 remapping cycles are carried
out between a uniform grid comprising 100 cells and a nonuniform grid comprising 90 cells. The unlimited
and limitedPPMh4 real computational times are 69 s and 76 s, respectively.

Unlimited Limited

Resolution CPU time Resolution CPU time

PPMh4 280 4.77 60 1.09

PPM ih4 300 4.82 60 1.00

PQM ih4/ih3 125 5.68 50 0.95

PQM ih6/ih5 50 1.00 50 1.00

Table 6: Resolution needed and computational time incurred to roughly match the error (L2-norm) obtained
with PQM ih6/ih5 for a remapping experiment (as described in Figure 17b) in a closed domain consisting
of 10000 remapping cycles. Each cycle is carried out between a uniform grid and a nonuniform grid whose
number of cells is decreased by 10% relative to the uniform grid.
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(i) Piecewise polynomial reconstruction based on cell averages.

(ii) A new grid is considered and superimposed on the reconstructed profile.

(iii) Cell averages are computed by integration. Reconstruction is repeated.

cell average

reconstruction

Figure 1: A regridding-remapping algorithm occurs in three steps. (i) Piecewise polynomial reconstruction
based on cell averages on a given grid. (ii) A new grid is considered and superimposed on the reconstructed
profile. (iii) Analytical integration of the reconstructed profile over the cellsof the new grid allows to compute
the cell averages for this new grid. The reconstruction step is then repeated. This illustration depicts the general
case of reconstructions on nonuniform grids featuring discontinuities across cell interfaces.
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hj−1 hj hj+1

ūj−1

ūj

ūj+1

uj+ 1
2

Pj(ξ)

xj− 1
2

xj+ 1
2

0

ξ

1

Figure 2: The average over cellj of width hj is notedūj . For convenience, the mapping ofx ∈ [xj− 1
2
, xj+ 1

2
]

ontoξ ∈ [0, 1] is used within each cell. The local polynomial reconstructionPj(ξ) is represented by the dashed
line. Variables at cell interfaces are identified by half-integer indexes, such as the edge valueuj+ 1

2
.
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j − 1 j j + 1 j + 2

j − 1 j j + 1 j + 2

(a)

(b)

uj+ 1
2

u−

j+ 1
2

u+

j+ 1
2

parabola centered
on cell j + 1

parabola centered
on cell j

cubic centered on
edge j + 1

2

Figure 3: Explicit estimates for the edge valueuj+ 1
2

using (a) an even-order accurate edge-centered cubic
spanning four cells and (b) two odd-order accurate cell-centered parabolas spanning three cells. Because the
parabolas are cell-centered, they provide two different estimates for the edge value,u−

j+ 1
2

andu+

j+ 1
2

, leading

to a discontinuous reconstruction.

34



ppm h3 (4.74)

ppm h4 (4.06)

ppm ih4 (3.39)

pqm h5/h4 (3.87)

pqm h6/h5 (3.62)

pqm ih6/ih6 (2.90)

(a)

(b)

ih4

ih6/ih6

Figure 4: Reconstructions of a Gaussian on a periodic domain using (a)PPM with three different edge-value
estimates and (b)PQM with three different edge-value estimates. The dashed line is the exact profile and
cell averages are depicted by horizontal solid lines. TheL2-norms of the error (×102) are indicated in the
legend, besides their respective schemes. In both cases, implicit estimates outperform their explicit equivalent,
both visually and by comparing the norms. The implicitPPM ih4 yields a lower error than both explicitPQM

schemes.
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(a) Uniform grids

(b) Nonuniform grids

Figure 5: Orders of accuracy of reconstruction schemes for a Gaussian on (a) uniform grids and (b) ran-
dom nonuniform grids. Convergence rates are given next to the scheme name, between parentheses. Ran-
dom nonuniform grids are modified uniform grids for which all edge locations are perturbed by a uniformly-
distributed number in[−h/4, h/4], whereh is the uniform grid size. Blue and red least-square linear curves are
for PPM andPQM schemes, respectively. Dashed and solid lines are for explicit and implicit schemes, respec-
tively. Whatever grid type is considered,PPM andPQM are at least third- and fifth-order accurate, respectively,
when the order of accuracy for the edge-value and edge-slope estimates is high enough. At low resolution,PPM

ih4 turns out to be an excellent candidate, outperformed only byPQM ih4/ih4 andPQM ih6/ih6 – see inset
on panel (a).PQM ih4/ih4, however, is only fourth-order accurate.
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σR

σC

σL

ūL

ūC

ūR

Figure 6: One-sided and centered slopes, as defined by Eq. (18). According toEq. (17), the limitedPLM

slope is the centered one,σC , which serves as reference for the slope consistency checks in the limited PQM

algorithm.
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(a)

ūL

ūC

uL

hC
2

|σ|

|uL − ūC |

uL ← ūC − |uL − ūC |

(b)

ūL

ūC

uL

|uL − ūC |

hC
2

|σ|

uL ← ūC −
hC
2 |σ|

(c)

ūL

ūC

uL

No change

Figure 7: Estimations of edge values may be unbounded and, therefore, need to be limited to lie in the range
defined by neighboring cell averages. The above example shows howa left edge value is limited using Eq.
(19). The dashed line represents thePLM reconstruction based on the limitedPLM slopeσ. (a-b) The left edge
value is unbounded and the minimum between|uL − ūC | and hC

2
|σ| is used to modify the edge value. (c)

The estimate is bounded and is not modified. The distancehC
2
|σ| is the absolute difference between the cell

averagēuC and the value of thePLM reconstruction at either cell edge.
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(a)

×
uL

uR

(b)

×

(c)

×

(d)

consistent
inflexion point

inconsistent
inflexion point

Figure 8: Examples of quartics that can be built based on bounded edge values and consistent edge slopes.
The limitedPLM slopeσ is assumed to be positive, as are the edge slopes. (a) The quartic is neither monotonic
nor bounded by neighboring cell averages. It features two inflexion points, one of which is inconsistent with
respect toσ. (b) The quartic is nonmonotonic but is bounded and it also has two inflexion points, one of them
being inconsistent. (c) The quartic is nonmonotonic and bounded. It hasone inconsistent inflexion point. (d)
The quartic is monotonic, bounded and it has two consistent inflexion points. Reconstructed quartics (a-c) are
not acceptable while quartic (d) is acceptable.

39



(a)

limited

unlimited

(b)

Figure 9: Dashed and solid curves are unlimited and limited quartics, respectively. Cell averages are repre-
sented by horizontal lines spanning the entire cell. Limiting is conducted by enforcing both inflexion points
to collapse on one of the edges. This is done by adjusting the edge slopes. (a) Inflexion points are located on
the left edge. Curvature is positive, which is the only possibility that does not violate local conservation (the
quartic average must be equal to the cell average). (b) Inflexion points are located on the right edge. Curvature
is negative. In both examples, the unlimited quartics have bounded edge values and consistent edge slopes
(positive). Yet, they have inconsistent inflexion points.
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(a)

Q2

Q1

Q∗
2

(b)

Figure 10: In both examples, the quarticQ1 obtained after the first step of the limiting algorithm is nonmono-
tonic but the edge values are bounded and the edge slopes are consistent. The second step of the algorithm
guarantees monotonicity by having both inflexion points collapse onto one ofthe edges (the left edge in these
examples). A first-attempt quarticQ∗

2 is produced that has a single-signed curvature, which is done by adjusting
the edge slopes via (26)-(27) (or via (31)-(32) when inflexion points are located on the right edge). If one of
the adjusted edge slopes is inconsistent, it is necessary to adjust the opposite edge value to obtain the definitive
monotonic quarticQ2. (a) The first-attempt quarticQ∗

2 has an inconsistent left slope. Monotonicity is restored
by setting the slope to zero and adjusting the right edge value, which produces the quarticQ2. (b) Q∗

2 has an
inconsistent right slope. The monotonic quarticQ2 is obtained by setting this slope to zero and adjusting the
left edge value.
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Figure 11: Dispersion relations for unlimitedPPM and PQM advection schemes using Eq. (36), on uniform
grids with a CFL number of 0.25. The left panel is indicative of numerical diffusion while the right panel
shows the phase error. All explicit schemes are the most diffusive and feature the largest phase error for
higher wavenumbers (shorter wavelengths) relative to the grid size. The best candidates arePPM ih4 andPQM

ih6/ih6, which introduce less numerical diffusion and exhibit better phase properties.PQM ih4/ih4 also has
good properties but is only fourth-order accurate. To be noted is the underperforming phasal behavior ofPPM

h4, which is the originalPPM scheme. Schemes using explicit and implicit estimates for the edge values and
slopes are represented with dashed and solid lines, respectively. Blue and red lines are used forPPM andPQM

schemes, respectively. Shown values forκh
π

are equivalent to wavelengths of, from left to right:8h, 6h, 5h,
4h, 3h and2h.
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(b)

(a) ppm h3

ppm h4

ppm ih4

pqm ih4/ih4

pqm h5/h4

pqm h6/h5

pqm ih6/ih6

Figure 12: Unlimited advection experiments on uniform grids, in a periodic domain. Comparison of the
advected solutions with the exact solution (black line) after 10 revolutions for a selection of unlimited (a)PPM

schemes and (b)PQM schemes. The initial condition is given by Eq. 38. The grid has 160 cells and the CFL
number is 0.25. The interpolation between cell averages is not the reconstructed profile and is drawn for visual
convenience.

43



(b)

(a) ppm h3

ppm h4

ppm ih4

pqm ih4/ih4

pqm h5/h4

pqm h6/h5

pqm ih6/ih6

Figure 13: Limited advection experiments on uniform grids, in a periodic domain. Comparison of the advected
solutions with the exact solution (black line) after 10 revolutions for a selection of limited (a)PPMschemes and
(b) PQM schemes. The initial condition is given by Eq. 38. The grid has 160 cells and the CFL number is 0.25.
The interpolation between cell averages is not the reconstructed profile and is drawn for visual convenience.
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(b)

(a) ppm h3

ppm h4

ppm ih4

pqm ih4/ih4

pqm h5/h4

pqm h6/h5

pqm ih6/ih6

Figure 14: Limited advection experiments on nonuniform grids, in a periodic domain. Comparison of the
advected solutions with the exact solution (black line) after 10 revolutions for a selection of limited (a)PPM

schemes and (b)PQM schemes. The initial condition is given by Eq. 38. The grid has 160 cells and the CFL
number is 0.25 relative to the smallest grid cell. The interpolation between cell averages is not the reconstructed
profile and is drawn for visual convenience.
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(a) unlimited (b) limited
ppm ih4

pqm ih4/ih4

pqm h5/h4

pqm h6/h5

pqm ih6/ih6

ppm ih4

pqm ih4/ih4

pqm h5/h4

pqm h6/h5

pqm ih6/ih6

Figure 15: Advection of a Gaussian on a low-resolution uniform grid containing 20 cells. The domain is
periodic and results are shown after one revolution (CFL number is 0.25). (a) The unlimitedPPM ih4 scheme
outperformsPQM h5/h4, the latter being slightly more diffusive as suggested by the dispersion analysis in
Figure 11. (b) The limitation ofPPM ih4 somewhat inhibits its intrinsic performance, as it now performs
similarly to PQM h5/h4. The interpolation between cell averages is not the reconstructed profileand is drawn
for visual convenience.
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(a) Unlimited
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Figure 16: Orders of accuracy of (a) unlimited and (b) limited advection schemes for a Gaussian on uniform
grids. Convergence rates are given next to the scheme name, between parentheses, and are established with
respect to the Euclidian norm defined by Eq. (39). The convergence rates are roughly the same on nonuniform
grids and are not shown. Note the sixth-order accuracy ofPQM h6/h5 andPQM ih6/ih6. Also, notice how
PQM ih4/ih4 performs better thanPQM h5/h4 at lower resolution but is outpaced at higher resolution. The
convergence rates for the unlimited schemes are the same as that obtained for unlimited reconstruction in Figure
5. The resolution of the Gaussian extremum is only second-order accurate, which is dominant for limited
schemes.
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(b)

(a)

ppm h4

ppm ih4

pqm ih4/ih3

pqm ih6/ih5
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ppm ih4

pqm ih4/ih3

pqm ih6/ih5

Figure 17: Unlimited remapping experiments in a closed domain using (a) low-order boundary conditions and
(b) high-order boundary conditions. Each remapping cycle comprises the following steps: (i) reconstruction on
a uniform grid composed of 20 cells, (ii) remapping onto a nonuniform grid composed of 18 cells that changes
at each cycle, (iii) reconstruction on the nonuniform grid and (iv) remapping back onto the uniform grid. The
light gray, thick line is the exact solution and the black thin lines represent thereconstructed profiles on the
uniform grid, shown after 1000 remapping cycles. Notice the strong influence of the boundary conditions on
the overall results.
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(a) Low-order boundary conditions

(b) High-order boundary conditions

Figure 18: Convergence analysis for the unlimited experiment described in Figure 17 and carried out on
gradually finer grids. For each grid, 500 remapping cycles are conducted and theL2-norm of the error is
computed between the exact and reconstructed profiles. (a) Low-order boundary conditions are used, which
reduces the convergence rate down to 2.5 for all schemes. (b) High-order boundary conditions allow to preserve
the nominal order of accuracy of all schemes.
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